Ancestor Sampling for Particle Gibbs

نویسندگان

  • Fredrik Lindsten
  • Michael I. Jordan
  • Thomas B. Schön
چکیده

We present a novel method in the family of particle MCMC methods that we refer to as particle Gibbs with ancestor sampling (PG-AS). Similarly to the existing PG with backward simulation (PG-BS) procedure, we use backward sampling to (considerably) improve the mixing of the PG kernel. Instead of using separate forward and backward sweeps as in PG-BS, however, we achieve the same effect in a single forward sweep. We apply the PG-AS framework to the challenging class of non-Markovian state-space models. We develop a truncation strategy of these models that is applicable in principle to any backward-simulation-based method, but which is particularly well suited to the PG-AS framework. In particular, as we show in a simulation study, PG-AS can yield an order-of-magnitude improved accuracy relative to PG-BS due to its robustness to the truncation error. Several application examples are discussed, including Rao-Blackwellized particle smoothing and inference in degenerate state-space models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Particle gibbs with ancestor sampling

Particle Markov chain Monte Carlo (PMCMC) is a systematic way of combining the two main tools used for Monte Carlo statistical inference: sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC). We present a new PMCMC algorithm that we refer to as particle Gibbs with ancestor sampling (PGAS). PGAS provides the data analyst with an off-the-shelf class of Markov kernels that can be used ...

متن کامل

Static-parameter estimation in piecewise deterministic processes using particle Gibbs samplers

We develop particle Gibbs samplers for static-parameter estimation in discretelyobserved piecewise deterministic processes (pdps). pdps are stochastic processes that jump randomly at a countable number of stopping times but otherwise evolve deterministically in continuous time. A sequential Monte Carlo (smc) sampler for ltering in pdps has recently been proposed. We rst provide new insight into...

متن کامل

Particle Gibbs with Ancestor Sampling for Probabilistic Programs

Particle Markov chain Monte Carlo techniques rank among current state-of-the-art methods for probabilistic program inference. A drawback of these techniques is that they rely on importance resampling, which results in degenerate particle trajectories and a low effective sample size for variables sampled early in a program. We here develop a formalism to adapt ancestor resampling, a technique th...

متن کامل

Particle Gibbs for Infinite Hidden Markov Models

Infinite Hidden Markov Models (iHMM’s) are an attractive, nonparametric generalization of the classical Hidden Markov Model which can automatically infer the number of hidden states in the system. However, due to the infinite-dimensional nature of the transition dynamics, performing inference in the iHMM is difficult. In this paper, we present an infinite-state Particle Gibbs (PG) algorithm to ...

متن کامل

On particle Gibbs sampling

The particle Gibbs sampler is a Markov chain Monte Carlo (MCMC) algorithm to sample from the full posterior distribution of a state-space model. It does so by executing Gibbs sampling steps on an extended target distribution defined on the space of the auxiliary variables generated by an interacting particle system. This paper makes the following contributions to the theoretical study of this a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012